

PLANT SCIENCE RESOURCES

Science Activity Journal Pages

These free downloadable sheets from

Why Play Learning

work alongside the
Plant Science booklet

You could print out the whole booklet if you intend to work through all the experiments – or you could just print out the pages you need, as and when you need them.

Just Have FUN

Colourful Celery Transport

Plant science page reference 8 – 9

Date _____

Colour Scientist _____

My Rainbow Laboratory Setup

Colours I'm using (circle the ones you chose):

Number of celery stalks: _____

My Prediction

I think the celery will:

Fastest colour will be:

Special Challenge

- Split stalk
- Age comparison
- Temperature test

Why I chose this:

Colour Racing Championship Results

After 1 hour: _____

After 3 hours: _____

After 6 hours: _____

After 24 hours: _____

🏆 Fastest colour winner: _____

A space for notes

Colourful Celery Transport

Reflections & Learning

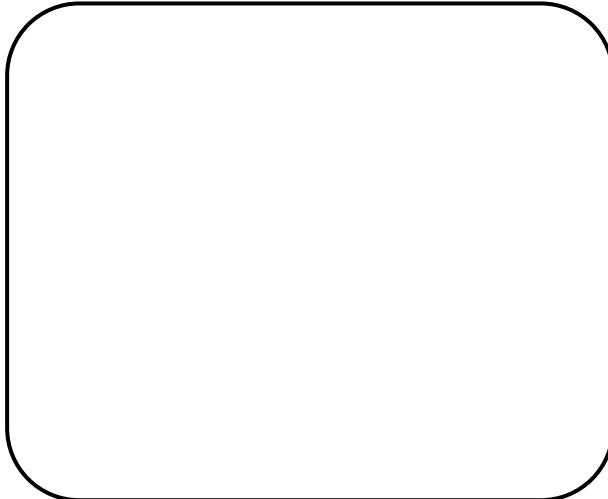
Amazing Transport Discovery

Which parts of the celery changed colour first?

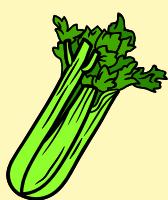
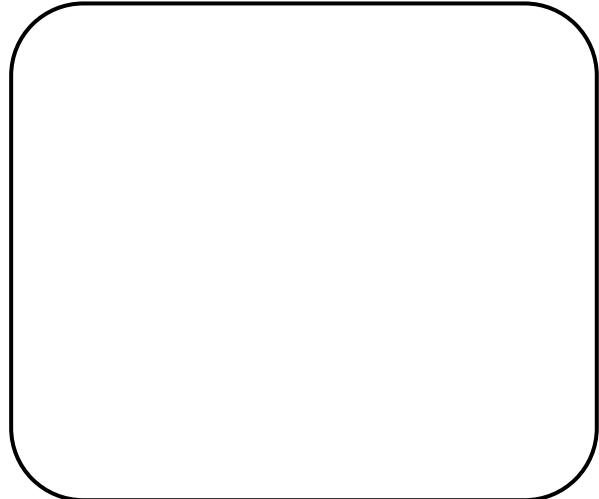
When you cut the celery horizontally, what pattern did you see?

The most amazing thing I observed was:

Scientific Understanding

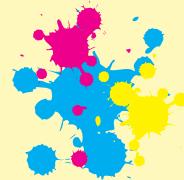

Plants transport water through tubes called:

This process helps plants because:



This is similar to how _____ works in my body:

Draw Your Rainbow Results

Before



After 24 hours

Colour Transport Master

- Successful colour transport**
- Scientific observation**
- Understanding xylem**
- Making connections**

Sprouting Seed Maze Challenge

Plant science page reference 10 – 11

Date _____

Maze Designer _____

Plan Your Maze Before You Build It

My Maze Design: Sketch your maze layout here – where will you put the walls?

My Setup

Type of seed: _____

Why I chose these:

My Prediction

I think the shoots will:

I think it will take _____
days

Daily Maze Monitoring

Day 1: Germination check: _____
Day 3: First movements: _____
Day 5: Maze navigation: _____
Day 7: Problem solving: _____
Day 10: Final results: _____

A space for notes

Sprouting Seed Maze Challenge

Reflections & Learning

Amazing Plant Behaviour

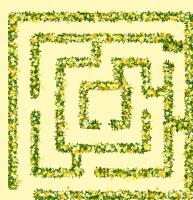
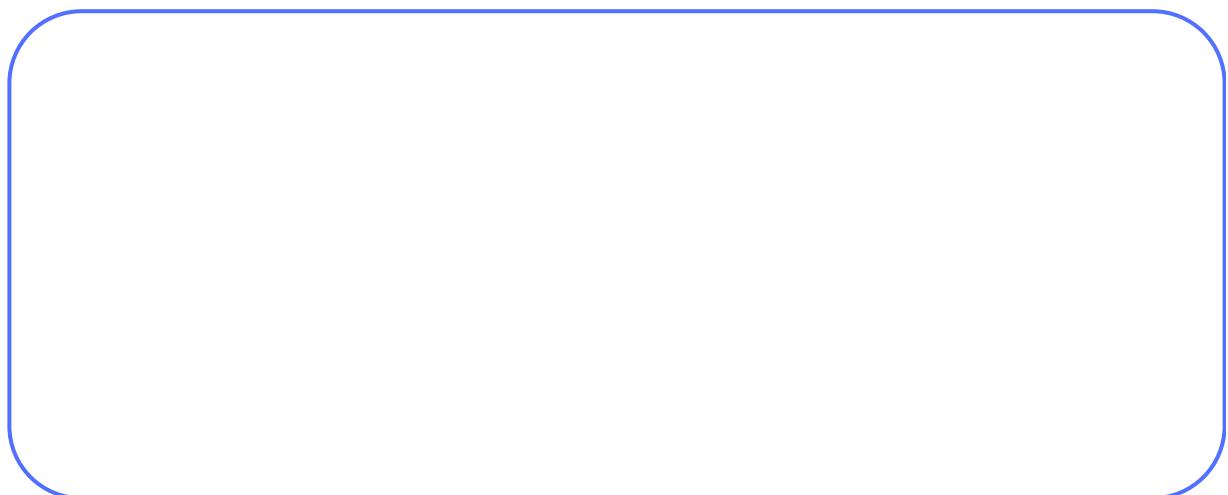
The shoots found the light by _____

When they hit the wall they _____

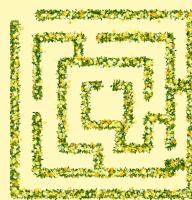
The most surprising thing was: _____

Scientific Understanding

Plants grow towards light because:

This helps them survive by:



Draw your maze journey –
Show the path your seed took through the maze to reach the light

Maze Master Achievements

- Successful germination
- Maze completed
- Scientific observation
- Understanding phototropism

Worm Observatory Investigation

Plant science page reference 12 - 13

Date _____ **Underground Explorer** _____

My Underground Laboratory Setup

Number of worms:

My soil layers:

Soil Sand Compost Other:

Food I gave them _____

My Underground Hypothesis

I think the worms will:

I predict this will take:

Tunnel Predictions

I think they'll prefer: _____

Their tunnels will:

Daily Worm World Watch

Day 1: What can I see? _____

Day 3: What changed? _____

Day 7: New tunnels? _____

Day 14: Amazing progress _____

A space for notes

Worm Observatory Investigation

Reflections & Learning

Incredible Worm Behaviour

The worms moved the soil by: _____

Their favourite layer seemed to be: _____

The most surprising discovery was: _____

After two weeks, the soil looked: _____

Scientific Understanding

Worms help plants by: _____

Without worms, gardens would: _____

Worms are important because they: _____

Draw your worm journey –
Show the path your worms created through the soil layers

Underground Explorer Expert

- Successful worm habitat**
- Detailed observations**
- Understanding soil mixing**
- Ecosystem knowledge**

Potato Power Battery

Plant science page reference 14 - 15

Date _____

Power Engineer _____

My Potato Battery Laboratory

Number of potatoes:

Potato varieties I'm testing:

King Edward Maris Piper Charlotte Sweet Potato Other:

Metals I'm using:

My Power Hypothesis

I think the potato battery will:

Best potato will be:

LED Predictions

The LED will stay lit for:

Brightness will be:

Time	LED Brightness	Voltage Reading	Notes
Start			
1 hour			
3 hours			
6 hours			
24 hours			

Potato Power Battery

Reflections & Learning

Amazing Power Discovery

Which potato gave the most power?

How long did the LED stay bright?

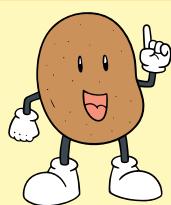
What happened to the brightness over time?

The most surprising result was:

Scientific Understanding

Potatoes can make electricity because:

The metals are important because:


Other fruits/vegetables that might work:

Draw Your Power Station

Show your potato battery setup and which potatoes worked best

⚡ Power Engineer Expert ⚡

- LED successfully lit
- Voltage measurements
- Understanding electrochemistry
- Renewable energy knowledge

Leaf Transpiration Investigation

Plant science page reference 16 – 17

Date _____ **Plant Breathing Detective** _____

My Plant Breathing Laboratory

Plants I'm testing:

Houseplant Garden plant Tree branch Herb plant

Other: _____

Weather:

Temperature:

My Investigation Plan

I think plants breathe more in:

I predict most water droplets:

Setup Details

Bag material:

How I sealed it:

Time Check	Droplets Count	Size Description	Weather Notes
1 hour			
3 hours			
6 hours			
Next day			
Final check			

Leaf Transpiration Investigation

Reflections & Learning

Amazing Plant Breathing Discovery

Which plant produced the most water?

Did weather conditions make a difference?

The most water appeared at what time?

The most amazing discovery was:

Scientific Understanding

Plants release water through their leaves because:

This process helps plants by:

This is similar to how I breathe because:

Draw Your Plant's Breathing Observatory

Show your favourite plant and how it breathes water vapour

Plant Breathing Expert

- Water collection success**
- Weather observations**
- Understanding transpiration**
- Plant-human connections**

Seed Germination Race Championship

Plant science page reference 18 – 19

Date _____

Race Official _____

My Racing Championship Setup

Seeds in my race:

Cress Bean Pea Sunflower Radish
 Other: _____

Growing conditions: _____

My Racing Predictions

Fastest germinator will be:

Slowest will be:

Why I think this:

Race Conditions

Soil type:

Water schedule:

Location:

Germination Racing Results

Day	Cress	Bean	Pea	Sunflower	Radish	Other
1						
2						
3						
5						
7						
10						

Seed Germination Race Championship

Reflections & Learning

Championship Results Analysis

Which seed was the ultimate champion?

Were my predictions correct?

The biggest surprise in the race was:

Some seeds didn't germinate because:

Scientific Understanding

Seeds need these conditions to germinate:

Different seeds germinate at different speeds because:

In nature, this timing helps plants by:

Draw Your Winner's Podium: Show your top 3 germination champions

Race Official Champion

- All seeds tested
- Daily observations
- Understanding germination
- Scientific comparison

And the
Winner
is...

Root Viewer Garden Observatory

Plant science page reference 20 -21

Date _____

Underground Observer_____

My Root Observatory Setup

Seeds/plants I'm observing:

Bean Pea Carrot Radish Onion
 Other: -----

Container type:

Soil depth:

My Root Predictions

I think the roots will:

Deepest roots will be:

Growing Conditions

Watering schedule:

Root Development Timeline

Day 3: First root signs:

Day 7: Root growth:

Day 10: Root branching:

Day 14: Root vs shoot:

Day 21: Final measurements:

Root vs Shoot Measurements

Plant Type	Root Length	Shoot Height	Root Pattern

Root Viewer Garden Observatory

Reflections & Learning

Underground World Discoveries

Which plant had the most impressive root system?

Did any roots surprise me with their pattern?

The relationship between root size and plant size was:

The most fascinating discovery was:

Scientific Understanding

Roots are important because they:

Different root patterns help plants by:

Without healthy roots, plants would:

Draw Your Underground World

Show your favourite root system and how it looked at different stages

Underground Observer Master

- Successful root viewing Growth measurements
- Understanding root systems Plant structure knowledge

Plant Breathing Experiment

Plant science page reference 22 – 23

Date _____ Breathing Detective _____

My Plant Breathing Laboratory

Plants I'm testing:

Aquatic plant (elodea) Garden plant Houseplant Herb
 Other: -----

Water temperature: _____ Light source: _____

My Breathing Hypothesis

I think plants breathe by:

Most bubbles will appear:

Test Conditions

Light conditions:
 Bright light Dim light Dark

Container setup:

Bubble Counting Championship

Time Period	Bright Light	Dim Light	Dark	Notes
First 5 mins				
Next 5 mins				
After 15 mins				
After 30 mins				
After 1 hour				

Plant Breathing Experiment

Reflections & Learning

Bubble Observatory Results

Which light condition produced the most bubbles?

What happened when I changed the light?

The bubbles looked like:

The most surprising result was:

Scientific Understanding

The bubbles are made of:

Plants need light for this process because:

This process is important for life on Earth because:

Draw Your Oxygen Bubble Observatory

Show your plant releasing oxygen bubbles in different light conditions

Breathing Detective Expert

- Successful bubble observation
- Understanding photosynthesis
- Light comparison test
- Oxygen production knowledge

Photosynthesis Leaf Disc Float

Plant science page reference 24 – 25

Date _____ **Photosynthesis Scientist** _____

My Leaf Disc Laboratory Setup

Leaves I'm testing:

Spinach Lettuce Garden leaves Herb leaves
 Other: _____

Number of discs: _____

Light source: _____

My Float Predictions

I think the discs will float because:

First to float will be:

Experiment Setup

Solution used:

How I removed air:

Floating Disc Championship

Time Check	Discs Floating	Leaf Type Floating	Light Condition	Notes
5 minutes				
10 minutes				
15 minutes				
30 minutes				
1 hour				

Photosynthesis Leaf Disc Float

Reflections & Learning

Floating Disc Discoveries

Which leaf discs floated first?

What made the difference between floating and sinking?

When I changed the light, what happened?

The most amazing discovery was:

Scientific Understanding

The discs float because they produce:

This process only happens when there is:

Photosynthesis is important because:

Without photosynthesis, life on Earth would:

Draw Your Floating Laboratory

Show your leaf discs floating and sinking at different stages

Photosynthesis Master

- Successful disc floating
- Understanding photosynthesis
- Light effect observed
- Oxygen production knowledge

Herb Aroma Investigation

Plant science page reference 26 – 27

Date _____

Aroma Detective _____

My Herb Laboratory Collection

Herbs I'm investigating:

Mint Basil Rosemary Lavender Thyme
 Other: _____

Collection time: _____

Weather: _____

My Aroma Predictions

Strongest smell will be:

Most pleasant will be:

Most unusual will be:

Testing Methods

Fresh leaves Crushed leaves
 Dried herbs In water

Family tasters:

Aroma Detective Results

Herb Name	Fresh Aroma	Crushed Aroma	Strength (1-5)	Family Favourite
Mint				
Basil				
Rosemary				

Herb Aroma Investigation

Reflections & Learning

Amazing Aroma Discoveries

Which herb had the most surprising smell?

How did crushing the leaves change the aroma?

Did different family members prefer different herbs?

The herb that reminded me of food was

Scientific Understanding

Plants make strong smells to:

Crushing releases more smell because:

Humans use herb aromas for:

Draw Your Herb Garden Plan

Design your ideal herb garden with your favourite discoveries

Aroma Detective Master

- Multiple herb testing**
- Family taste testing**
- Understanding plant aromas**
- Culinary connections**

Vegetable Regrowth Project

Plant science page reference 28 – 29

Date _____

Regrowth Specialist _____

My Regrowth Laboratory Setup

Vegetables I'm re-growing:

Spring onions Celery Lettuce Carrot tops Potatoes

Other: -----

Growing method:

Location:

My Regrowth Predictions

Fastest to regrow will be:

Most successful will be:

Time needed:

Setup Details

Water change schedule:

Light conditions:

Regrowth Progress Championship

Vegetable	Day 3	Day 7	Day 14	Day 21	Final Result
Spring onions					
Celery					
Lettuce					
Carrot tops					

Vegetable Regrowth Project

Reflections & Learning

Regrowth Success Stories

Which vegetable was the regrowth champion?

What surprised me about the regrowth process?

Which vegetables didn't regrow well and why?

How much money could this save our family?

Scientific Understanding

Vegetables can regrow because they have:

Some parts regrow better than others because:

This knowledge helps reduce food waste by:

Draw Your Kitchen Garden Success

Show your most successful regrowth experiment from start to finish

Regrowth Specialist Master

- Multiple vegetables tested**
- Long-term observation**
- Understanding plant regeneration**
- Sustainability awareness**

Cress Shapes Garden Art

Plant science page reference 30 – 31

Date _____

Garden Artist _____

My Cress Art Laboratory

Shapes I'm creating:

My name Smiley face Heart Star Animal shape
 Other: _____

Growing surface: _____

Cress variety: _____

My Art Predictions

Easiest shape will be:

Most challenging will be:

Time to see shapes:

Art Setup Details

How I made the pattern:

Watering method:

Garden Art Progress Gallery

Day 1: First sprouts:

Day 3: Shape emerging:

Day 5: Clear pattern:

Day 7: Art complete:

Day 10: Final masterpiece:

Root vs Shoot Measurements

Shape Created	Difficulty (1-5)	Success (1-5)	Days to Complete	Notes

Cress Shapes Garden Art

Reflections & Learning

Garden Art Gallery Reflections

Which shape worked out best?

What made some shapes harder to create than others?

How did the cress grow differently in thick vs thin areas?

The most creative discovery was:

Scientific Understanding

Cress grows in patterns because seeds need:

Controlling where plants grow helps us:

This knowledge could help in real gardens by:

Draw Your Garden Art Masterpiece

Show your most successful cress shape creation and design your next projects

Garden Artist Master

- Successful shape creation Creative pattern making
- Understanding plant spacing Artistic garden design